Find the area of the rhombus in which each side is 25 cm long and one of whose diagonals is 14 cm.


Answer:

336 cm2

Step by Step Explanation:
  1. Let ABCD be the given rhombus with AB=25 cm and AC=14 cm.



    Let the diagonals AC and BD bisect at a point O.
    We know that the diagonals of a rhombus bisect each other at right angles.
    So, AO=12AC and BO=12BD.
  2. Using Pythagous' theorem in right \triangle AOB, we have \begin{aligned} & AB^2 = AO^2 + BO^2 \\ \implies & (25)^2 = (7)^2 + BO^2 \\ \implies & 625 = 49 + BO^2 \\ \implies & 576 = BO^2 \\ \implies & 24 \space cm = BO \\ \end{aligned} As, BO = \dfrac { 1 } { 2 } BD, we have \begin{aligned} & BO = \dfrac { 1 } { 2 } BD \\ \implies & 24 = \dfrac { 1 } { 2 } BD \\ \implies & 2 \times 24 = BD \\ \implies & 48 \space cm = BD \\ \end{aligned}
  3. We know, \begin{aligned} \text { Area of rhombus } & = \dfrac { 1 } { 2 } \times \text { Product of its diagonals } \\ & = \dfrac { 1 } { 2 } \times AC \times BD \\ & = \dfrac { 1 } { 2 } \times 14 \times 48 \space cm \\ & = 336 \space cm^2 \end{aligned} Thus, the area of the rhombus is 336 \space cm^2.

You can reuse this answer
Creative Commons License