In the given figure, the radii of two concentric circles are 12 cm12 cm12 cm and 7 cm7 cm7 cm. ABABAB is the diameter of the bigger circle and BDBDBD is a tangent to the smaller circle touching it at DDD. Find the length ADADAD.
D O B E A


Answer:

17.06 cm17.06 cm17.06 cm

Step by Step Explanation:
  1. We know that angle in a semicircle is of 90.90.90. So, AEB=90.AEB=90.AEB=90.
  2. We also know that in two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.
    So, ODBEODBEODBE and ODODOD bisects BEBEBE.
  3. Using Pythagoras' theorem in right OBDOBDOBD, we have OB2=OD2+BD2OB2=OD2+BD2OB2=OD2+BD2 It is given that OB=12 cmOB=12 cmOB=12 cm and OD=7 cm.OD=7 cm.OD=7 cm. BD=OB2OD2=(12)2(7)2 cm=95 cmBD=OB2OD2=(12)2(7)2 cm=95 cmBD=OB2OD2=(12)2(7)2 cm=95 cm Now, BE=2BD=295 cm.    [ D is the midpoint of BE ] BE=2BD=295 cm.    [ D is the midpoint of BE ] BE=2BD=295 cm.    [ D is the midpoint of BE ] 
  4. Using Pythagoras' theorem in right AEBAEBAEB, we have [Math Processing Error] As, ABAB is the diameter of the circle, ABAB = 2×OB=2×12 cm=24 cm2×OB=2×12 cm=24 cm AE=AB2BE2=(24)2(295)2 cm=196 cmAE=AB2BE2=(24)2(295)2 cm=196 cm
  5. Using Pythagoras' theorem in right AEDAED, we have [Math Processing Error] We know that DE=BD=95 cm   [As, OD bisects BE]DE=BD=95 cm   [As, OD bisects BE]

    AD=AE2+DE2=(196)2+(95)2 cm=17.06 cmAD=AE2+DE2=(196)2+(95)2 cm=17.06 cm

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us